Avoiding Pitfalls in Regression Analysis

(Updated with links and more Dec 1, 2020. Updated with SAS Global Forum announcement on Jan. 22, 2021.)

Professors reluctant to venture into these areas do no service to their students for preparation to enter the real world of work.

Today (November 30, 2020)  I presented: “Avoiding Pitfalls in Regression Analysis” during the Causal Inference Webinar at the Urban Analytics Institute in the Ted Rogers School of Management, Ryerson University. I was honored to do this at the kind invitation of Murtaza Haider, author of Getting Started with Data Science.  Primary participants are his students in Advanced Business Data Analytics in Business. This is an impressive well-crafted course (taught in R) and at the syllabus-level covers many of the topics in this presentation. I met Murtaza some time ago online and have come to regard him as a first-rate Applied Econometrician.

Ethics and moral obligation to our students

Just as Peter Kennedy developed rules for the ethical use of Applied Econometrics, this presentation is the first step to developing a set of rules for avoiding pain in one’s analysis. A warning against Hasty Regression (as defined) is prominent.

(Update 1/22/2021: My paper, “Haste Makes Waste: Don’t Ruin Your Reputation with Hasty Regression,” has been accepted for a prerecorded 20 minute breakout session at SAS Global Forum 2021, May 18-20, 2021. More on this in a separate post later.)

Kennedy said in the original 2002 paper, Sinning in the Basement, “… my opinion is that regardless of teachability, we have a moral obligation to inform students of these rules, and, through suitable assignments, socialize them to incorporate them into the standard operating procedures they follow when doing empirical work.… (I) believe that these rules are far more important than instructors believe and that students at all levels do not accord them the respect they deserve.”– Kennedy, 2002, pp. 571-2”  See my contribution to the cause, an essay on Peter Kennedy’s vision in Bill Frank’s book cited below.

While the key phrase in Peter’s quote seems to be the “moral obligation,” the stronger phrase is “regardless of teachability.” Professors reluctant to venture into these areas do no service to their students when they enter the real world of work. As with Kennedy, some of the avoidance of pitfall rules are equally difficult to teach leading faculty away from in-depth coverage.

The Presentation

A previous presentation has the subtitle, “Don’t let common mistakes ruin your regression and your career.” I only dropped that subtitle here for space-saving and not to disavow the importance of these rules in a good career trajectory.

cover slide

This presentation highlights seven of ten pitfalls that can befall even the technically competent and fully experienced. Many regression users will have learned about regression in courses dedicating a couple of weeks to much of a semester, and could be self-taught or have learned on the job. The focus of many curricula is to perfect estimation techniques and studiously learn about violations of the classical assumptions.  Applied work is so much more and one size does not always fit. The pitfalls remind all users to think fully through their data and their analysis. Used properly, regression is one of the most powerful tools in the analyst’s arsenal. Avoiding pitfalls will help the analyst avoid fatal results.

The Pitfalls in Regression Practice?

  1. Failure to understand why you are running the regression.
  2. Failure to be a data skeptic and ignoring the data generating process.
  3. Failure to examine your data before you regress.
  4. Failure to examine your data after you regress.
  5. Failure to understand how to interpret regression results.
  6. Failure to model both theory and data anomalies, and to know the difference.
  7. Failure to be ethical.
  8. Failure to provide proper statistical testing
  9. Failure to properly consider causal calculus
  10. Failure to meet the assumptions of the classical linear model.

How to get this presentation

Faculty, if you would like this presentation delivered to your students or faculty via webinar, please contact me.  Participants of the webinar can request a copy of the presentation by emailing me at myers@uakron.edu. Specify the title of the presentation and please give your name and contact information. Let me know what you thought of the presentation as well.

You can join me on LinkedIn at https://www.linkedin.com/in/stevencmyers/. Be sure to tell me why you are contacting me so I will be sure to add you.

I extend this to those who have heard the presentation before when first presented to the Ohio SAS Users Group 2020 webinar series on August 26, 2020.

Readings, my papers:

Recommended Books:

Other Readings and references:

Myers on Educating Economics Students, SAS Global Forum Proceedings

I am an Award Winner, educating economics students with SASI am a presenter, educating economics students with SAS

This year the SAS Global Forum canceled for good reasons. I was looking forward to walking amongst the cherry blossoms with my wife Kimberly. I remain excited about the opportunity to speak to SAS Educators about educating economics students and to highlight our SAS partnership at the University of Akron, College of Business Administration, Department of Economics. Thanks go to Josh Horstman for his invitation on behalf of the Global Forum Content Advisory Team.  I missed meeting up with all of the great people of the SAS Global Academic Programs including Lynn Letukas, director, and Rochelle Fisher, our program manager for the University of Akron. 

I had hoped to expand friendships with colleagues met and those to be met and those who I have met only online.  And, perhaps most of all, I am disappointed that I missed being presented with the 2020 SAS Distinguished Educator award. 

Honored and humbled

I am still honored and humbled by the 2020 SAS Distinguished Educator award and recall the congratulatory call from Lynn with the same original shock and pleasure. Also, I am honored to be invited to speak at the SAS Global Forum. Thanks to all involved, especially the conference chair, Lisa Mendez, who worked so hard to coordinate this gigantic global event. I was pleased to meet her at SCSUG and hear so much of the news about the upcoming event.

My Published Paper

Nevertheless, I want to announce that my paper is now published in the 2020 SAS Global Forum Proceedings. My paper titled Show Me the Money! (thanks to Josh for that part) Preparing Economics Students for Data Science Careers is embedded below and a link to download is on the floating menu bar. The paper is a combination of my journey over my four-decade career and description of our programs and SAS use in the Department of Economics and why economists make great data scientists.

If you take time to read it I would appreciate any feedback you have. We can discuss curriculum or whatever, and I hope to leave this as I retire from UA as a roadmap for faculty that follow.

Click to access 4705-2020.pdf

Enjoy and please contact me to discuss.

Other posts on educating economics students with SAS

Please check out other SAS education-related blog posts. A few examples of educating economics students:

SAS Boot Camp
SAS Coding, Problem Based Learning and preparing economists for data science careers: frustration to elation
SAS Certificate in Economic Data Analytics
Economic Freedom: Solve Problems, Tell Stories
Importance of Economic Analysis to Data Science

SAS Boot Camp

So this should be fun! We have some students who need a quick dive into SAS programming so they can succeed in their required classes. So starting Friday, January 24, I will offer four 2-hour sessions trying to get them up to speed. I have opened it to any student or faculty at the University of Akron. This boot camp will cover four sessions shown to the right and will acquaint the participant with issues and problems in economic business data analysis. The sessions will progress from raw data-step programming into exploratory and data cleaning and finally through applied econometrics. 

Sessions 2, 3, and 4 are based on the first three papers on My Analytic Papers Using SAS page. See that page for links to the data and code on my github.

Four 2-hour Sessions:

Fri., Jan. 24
Introduction to SAS Programming
Fri., Jan. 31
Time Series Data
Fri., Feb. 7
Cross Section Data
Fri., Feb. 14
Evaluating Decisions

The University of Akron
College of Business Administration
Analytics Lab 176

10:00 am to 12:00 pm. 

Seating is limited and priority will be given to the students and faculty of the CBA. 

Only those with current student or faculty status and a valid university of Akron email address may register.  Those getting seats will be notified on January 22.