Economic Freedom: Solve Problems, Tell Stories

Time and time again we hear employers wanting two qualities out of their data scientists, be able to solve problems and tell stories. How important is economic freedom? Does it lead to greater standards of living? The answer can be shown in tables of results well laid out, but visualizing those results has an even greater impact and better tells the story.

If a “picture is worth a thousand words” then a SAS SGPLOT is worth many pages of tables or results. Can you see the story here?

Economic Freedom is shown to be associated with ever higher standards of living across countries.

The problem is whether countries with higher levels of economic freedom also have higher standards of living. It appears that is true. The association seems undeniable. Is it causal? That is another question that the visual begs. Chicken and Egg reasoning doesn’t seem likely here. It does appeal that the association is one way. For that to be established, we have to answer is economic freedom necessary for higher standards of living. And we have to determine that if the economic freedom had not been accomplished would the standard of living not been as high.

More on that in a future post on the importance of “why.” For now, enjoy the fact that their seems to be a key to make the world better off. Oh, not just from this graph, but from countless successes in countries in the past. My undergraduate analytic students are expanding on this finding to see if their choices from the 1600 World Development Indicators of the World Bank hold up in the same way as GDP per-capita does here in this graph. We/they modify the question to “Do countries that have higher economic freedom also have greater human progress?” I am anxious to see what they find.

The Economic Freedom data comes to us from The Heritage Foundation. Let me know what you think about the visual.

This is a followup to my post on my blog at econdatascience.com “Bubble Chart in SAS SGPLOT like Hans Rosing.”

The SAS PROC SGPLOT code to create the graph is on my GITHUB repository. It makes use of Block command for the banding and selective labeling based on large residuals from a quadratic regression. The quadratic parametric regression and the loess non-parametric regression are to suggest the trend relationship.

Sorry Data not included.